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Cervical cancer screening remains pivotal for early detection and effective disease management, yet conventional
cytopathological methods relying on stained cell-smear analysis face critical limitations in diagnostic throughput
and sensitivity. We present a stain-free Visual-Aided Diagnosis via Stimulated Raman Cytology (VAD-SRC)
platform that enables rapid cervical cell screening through simultaneous chemical and morphological profiling.
By capturing intrinsic biomolecular contrast via stimulated Raman scattering (SRS) microscopy, our platform
establishes malignancy-associated cellular fingerprints through quantitative analysis. Integrated with a deep
convolutional neural network architecture, VAD-SRC achieves superb diagnostic performance (98.5 % accuracy,
100 % sensitivity) on an independent test set for binary classification of benign versus malignant cases. More-
over, its high-resolution segmentation function automates the identification of individual cancer cells within a
mixture of five cell types: normal cells, leucocytes, low-grade squamous intraepithelial lesion (LSIL), high-grade
squamous intraepithelial lesion (HSIL), and squamous cervical cancer (SCC) cells. This advancement offers
promising potential for cervical cancer screening and visual assessments within cytopathology workflows,

enhancing diagnostic efficiency and precision.

1. Introduction

Cervical cancer (CC) remains a critical global health challenge as one
of the three most common malignant tumors of female reproductive
system, causing more than 300,000 annual deaths worldwide [1],
maintaining its status as the second leading cause of cancer-related
mortality in women aged 20-39 [2]. Despite the success of Pap smear
screening and human papillomavirus (HPV) vaccination programs, the
disease continues to pose a significant burden, particularly in regions
with limited access to early screening [3-6]. While the ThinPrep Cyto-
logic Test (TCT) has been widely adopted, its diagnostic value is limited
by inter-observer variability, modest sensitivity for high-grade lesions,
and lengthy processing times [7-10]. According to the America Cancer
Society (ACS) management guidelines [11], low grade squamous
intraepithelial lesion (LSIL) is considered benign and typically
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monitored without immediate intervention, whereas high grade squa-
mous intraepithelial lesion (HSIL) and squamous cervical cancer (SCC)
are categorized as malignant, necessitating definitive diagnosis and
treatment. The morphological similarities between LSIL and reactive
changes frequently results in diagnostic ambiguity, highlighting critical
gaps in current diagnostic frameworks and the urgent need for more
accurate and efficient cervical cytologic screening modalities.

Various label-free optical methods have been widely investigated for
cervical cell imaging and cancer screening. While techniques like optical
coherence tomography (OCT), autofluorescence microscopy, and second
harmonic generation (SHG) microscopy provide structural insights, they
lack chemical specificities of cells [12,13]. Spontaneous Raman scat-
tering spectroscopy, despite its biochemical sensitivity, suffers from
weak scattering cross-section and slow acquisition speed for efficient
histologic diagnosis [14-16]. Coherent anti-Stokes Raman scattering
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(CARS) microscopy struggles with non-resonant background interfer-
ence, complicating accurate quantification of chemical concentrations
[17]. Despite these challenges, the chemical information associated with
cellular metabolic reprogramming is critically important for tumor
progression [18], including the energy demand of tumor proliferation
and invasion that could alter the energy supply pathways through
anaerobic glycolysis and lipid metabolism, etc. [19]. Hence intracellular
chemical compositions (such as lipid and protein) may be used to
differentiate normal cells from tumor cells. However, the analysis of
conventional cervical cytology is either limited by external labeling
[20-22] or constrained by imaging speed and resolution [23-26].

As a novel imaging technique, stimulated Raman scattering (SRS)
microscopy amplifies Raman signal by orders of magnitude through
coherent stimulated emission process, achieving high sensitivity and
imaging speed, while retaining chemical resolution based on the spectral
fingerprints of intrinsic molecules [27-30]. Thus, SRS microscopy offers
advantages in rapid label-free chemical imaging at the single-cell level
with diffraction-limited spatial resolution. Recent researches have
demonstrated that SRS integrated with artificial intelligence (AI) algo-
rithms holds promise in clinical screening and rapid diagnosis of tumor
on unprocessed tissues, with potential applications in intraoperative
histopathology for various types of human cancers [31-36]. Although
single-cell SRS imaging has also been shown in the diagnosis of perito-
neal metastasis of gastric cancer [37], it heavily relied on the numerical
analysis of multiple cytological features using K-means and SVM (Sup-
port Vector Machine) algorithms. From the perspective of pathologists,
there exist distinct differences between cytological and histological ex-
aminations in clinical practice [38-40]. While direct image-guided
cytologic examination is more favored in clinical settings due to its
specificity [41], it also provides valuable diagnostic confirmation op-
portunities based on Al-recognized abnormal cells, alongside predictive
results [42-44].

In this study, we developed a Visual-Aided Diagnosis via Stimulated
Raman Cytology (VAD-SRC) platform for cervical cancer screening.
Unlabeled cellular images containing lipid and protein distributions
were captured, and chemical analysis was performed on various cell
types to investigate the correlation between cytological features and
diagnostic performance of the neural network. A convolutional neural
network (CNN)-based classification model successfully categorized im-
ages into benign and malignant groups, achieving an accuracy of 98.5 %
and a sensitivity of 100 %. Additionally, a segmentation network was
implemented to visualize individual cancer cells within the malignant
group, aiding pathologists in final decision-making for rapid diagnosis in
cervical cytology screening.

2. Materials and methods
2.1. Collection and preparation of cervical cells

The study was approved by the Institutional Ethics Committee of the
Obstetrics and Gynecology Hospital of Fudan University, School of
Medicine with written informed consent (approval no. 2024-227). Cell
samples were collected from 41 individuals undergoing cervical cancer
screening at Obstetrics and Gynecology Hospital of Fudan University,
including 8 healthy controls and 33 patients pathologically confirmed
with cervical malignant lesions. For each individual, cervical cell sam-
ples were collected using a cervical cytobrush. Half of the samples were
used for cytological examination, and further testing was determined
based on the results, ultimately leading to the clinical diagnosis of the
patient. The other half of the samples were immediately prepared into
smears without additional fixation or storage, and subjected directly to
SRS imaging. Specifically, the samples were rinsed with phosphate-
buffered saline, and centrifuged at 2000 rpm for 3 min. A cell suspen-
sion (approximately 10 uL) was then dropped onto a glass slide and
evenly spread for SRS microscopy examination, followed by analysis
using VAD-SRC. The number of cells in each group was maintained in a
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balanced distribution across different analytical tasks (e.g., Student’s t-
test, classification model, and segmentation model).

2.2. SRS imaging

We used the following setup for SRS imaging: a femtosecond optical
parametric oscillator (Insight DS+, Newport) laser was employed as the
light source, with a fixed-wavelength beam (1040 nm, ~200 fs) serving
as the Stokes beam and a tunable beam (680-1300 nm, ~150 fs) func-
tioning as the pump beam. The Stokes beam and pump beam were lin-
early chirped to picoseconds using SF57 glass rods, providing sufficient
spectral resolution. The Stokes beam was modulated by an electro-optic
modulator at a frequency of 20 MHz. The two spatially and temporally
overlapped beams were focused onto the sample through a laser scan-
ning microscope (FV1200, Olympus) and a water immersion objective
lens (UPLSAPO 60XWIR, NA 1.2 water, Olympus) to induce the SRS
process. The stimulated Raman loss signal was detected by a homemade
back-biased photodiode and the electronic signal was further demodu-
lated with a lock-in amplifier (HF2LI, Zurich Instruments) to form im-
ages. The motorized delay stage selected the target Raman frequency by
adjusting the pulse time delay between the two beams. For cellular
imaging, we utilized the Raman shifts at 2845 cm™! and 2930 cm™.
Based on the spectral differences of lipids and proteins at these two
wavenumbers, we obtained SRS images of lipid and protein distributions
through a linear decomposition algorithm, generating a two-color SRS
image with lipids represented in green and proteins in blue. All images
were acquired at 512 x 512 pixels, with a pixel dwell time of 2 ys. The
system’s spatial resolution was 350 nm. The laser power incident on the
sample was as follows: pump 30 mW and Stokes 30 mW.

2.3. Visual-aided diagnostic model

To achieve visual-aided diagnosis of cervical cells, we designed a
deep learning algorithm that includes two models: a classification model
and a segmentation model. The model was developed using the PyTorch
framework compiled in Python. The core of the classification model is
the "ResNet50" network, which consists of 49 convolutional layers and
one fully connected layer. The basic building block of the network is the
residual block, with each residual block consisting of three convolu-
tional layers. The collected SRS images are used as input, and the model
outputs the predicted results along with their probabilities. The core of
the segmentation model is the "DeepLabV3+" network, which employs
an encoder-decoder structure. The encoder part is responsible for feature
extraction. Its main body consists of a deep convolutional neural
network (DCNN) with atrous convolutions, along with the atrous spatial
pyramid pooling module (ASPP). The decoder part progressively re-
stores spatial information through upsampling. SRS images are used as
input, and the output of the network is a segmentation map, where each
pixel in the input image is assigned a class label. The five types of cells
are assigned five class labels with color coding. All deep learning tasks
were conducted on a workstation equipped with an NVIDIA GTX 1080Ti
GPU (11 GB memory). Model development and training were imple-
mented in Python 3.11.5 using PyTorch 2.0.1.

In the dataset preparation process, for the classification model, pa-
thologists pre-annotated the SRS images into benign/malignant cate-
gories; for the segmentation model, pathologists pre-annotated the
regions of different cells within the images to generate segmentation
masks. The datasets are subsequently divided into training and testing
sets. The test set images were independent of the training process at the
patient level. The remaining images were used for model development.
Within this subset, fivefold cross-validation was applied to separate
training and validation subsets for parameter optimization. To reduce
overfitting and balance class distribution, data augmentations (rotation,
flipping, and adjustment of contrast and brightness) were applied prior
to training. Accuracy, the receiver operating characteristic (ROC), area
under the curve (AUC), and confusion matrix were used to evaluate the
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performance of classification models. Intersection over union (IoU),
recall, precision and dice coefficient were used to evaluate the perfor-
mance of segmentation model. The network was initialized as follows:
the learning rate for the classification model was set to 0.075, while the
learning rate for the segmentation model was set to 0.007. Stochastic
Gradient Descent (SGD) was chosen as the optimizer, and Cross-
EntropyLoss was used as the loss function.

2.4. Images processing and analysis

For SRS images, the intensity distributions of lipids and proteins in
cells were obtained using a linear decomposition algorithm. ImageJ was
then utilized to extract the area, total lipid intensity, total protein in-
tensity, average lipid intensity, average protein intensity, and the pro-
tein/lipid ratio for normal cells, leucocytes, LSIL, HSIL, and SCC cells.
The PCA algorithm was used to reduce the dimension of cytological
feature data, and K-means algorithm was used to cluster the data after
dimensionality reduction. Both PCA and K-means were performed by
Origin. A Student’s t-test was conducted to compare cytological feature
data between groups, yielding p values (adjusted by Holm-Sidak),
confidence intervals (CI) and R values. Spearman correlation analysis
was performed to analyze the cytological features of cells at different
degrees of malignancy, obtaining r values and p values. All analyses
were executed using SPSS.

Prior to deep learning analysis, all raw SRS images were normalized
and standardized (mean-centered and variance-scaled) to stabilize
model training. Data augmentation methods were also applied to
expand dataset diversity and reduce overfitting.

3. Results and discussion
3.1. Workflow of VAD-SRC

The main goal of our study is to develop a rapid, accurate and image-
guided cervical cancer screening method. SRS microscopy was
employed to capture intrinsic molecular information without staining. A
deep learning-based visual-aided diagnostic system was developed to
reduce pathologists” workload and provide more objective diagnoses.
Fig. 1 illustrates the workflow of VAD-SRC. First, cervical cell specimens
were collected from patients using sample brushes, which were then
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smeared onto glass slides for direct SRS imaging (Fig. 1a) based on the
Raman bands of the CH; (2845 em™)) and the CHs (2930 em ™)) vibra-
tions. Such frequency selection has been widely adopted to extract
protein and lipid distributions in biological speciemens based on their
characteristic SRS spectra (Supplementary Fig. S1) [45-47]. The
dual-channel images were decomposed into lipid (green) and protein
(blue) distributions to obtain two-color SRS images using a linear
combination algorithm (Fig. 1b) [48,49]. Then the images were fed into
a convolutional neural network (CNN)-based diagnostic system to
conduct both the classification and segmentation tasks (Fig. 1c). In this
study, cervical cells were classified into binary groups (benign/malig-
nant) according to clinical criteria: those containing only normal cells,
leucocytes, and LSIL cells were classified as benign; whereas those
showing any SCC or HSIL cells were classified as malignant [50]. The
malignant group was further processed by the segmentation model to
delineate individual HSIL and SCC cells within the whole-slide image. By
doing so, the Al-assisted visualization of malignant cells allows pathol-
ogists to rapidly identify target cells to make final diagnostic decision,
helping to avoid examination on a large number of cells with improved
diagnostic accuracy.

3.2. SRS imaging and Pap smear of cells

Cervical cell specimens were imaged with SRS microscopy to map
out the chemical and morphological profiles in a label-free manner. To
directly compare SRS with Pap smears in revealing cytologic features of
various cervical cells, we imaged each sample with the two modalities:
SRS microscopy without labeling, and Pap staining followed by bright-
field optical microscopy. Fig. 2 shows the comparison between SRS
and Pap smear results of five cell types, including normal cells (Fig. 2a),
leucocytes (Fig. 2b), LSIL (Fig. 2¢), HSIL (Fig. 2d) and SCC (Fig. 2e) cells.
It can be seen that SRS images readily show the distinct cell morphology
and chemical contrast of each cell types. Moreover, they demonstrate
high consistency with Pap smears in cytologic diagnosis as recognized
by pathologists. Normal cervical cells tend to have the largest size and
higher protein content (blue), lymphocytes appear the smallest in size.
LSIL cells clearly exhibit perinuclear cytoplasmic clearing (koilocytosis,
arrow) and demonstrate an increased nucleus-to-cytoplasm (N/C) ratio
relative to normal cells. In contrast, both HSIL and SCC cells show an
even larger N/C ratio compared to LSIL cells. HSIL cells are
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Fig. 1. Workflow of visual-aided diagnostic system based on stimulated Raman cytology (VAD-SRC). a, Taking cell smears from patients undergoing cervical
cancer screening for SRS imaging. b, Cells were imaged at 2930 cm ™! (left) and 2845 cm™! (middle). A linear decomposition algorithm of the two raw images was
used to compute the distribution of lipid (green) and protein (blue), merging into a two-color SRS image (right). Scale bars: 5 y m. ¢, Visual-aided diagnostic system
consists of two components: a classification model and a segmentation model. The classification model genereates binary prediction of benign versus malignant, and
the segmentation model subsequently identifies individual cancer cells within the malignant group. (For interpretation of the references to color in this figure legend,

the reader is referred to the Web version of this article.)
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Fig. 2. Pap smear staining and SRS imaging of different types of cervical cells. a-e, Normal cells, leucocytes, low grade squamous intraepithelial lesion (LSIL)
cells (koilocytosis, arrow), high grade squamous intraepithelial lesion (HSIL) cells (coarse chromatin displaying granular pattern, arrow), squamous cervical cancer
(SCCQ) cells (nucleoli, arrow). The region of interest is shown with a magnified view inside the dashed box. Scale bars: 10 ; m.

characterized by coarse chromatin displaying a uniformly distributed
granular pattern (arrow), whereas SCC cells frequently present with
prominent nucleoli (arrow) [50,51]. Additionally, LSIL, HSIL, and SCC
cells show an elevated lipid content compared to normal cells (green).
The combined spatio-chemical information is essential for subsequent
feature analysis and deep-learning models in cervical cytopathology and
cell typing.

3.3. Quantitative morphological and chemical characterization of cervical
cells

We next performed detailed cytologic and biochemical character-
izations of normal cells, leucocytes, LSIL, HSIL and SCC cells. Taking
advantage of SRS microscopy in quantitative chemical analysis of un-
processed cervical cells, we were able to extract six key quantities for
cell typing, including the area, total protein intensity, total lipid in-
tensity, mean protein intensity, mean lipid intensity, and protein/lipid
ratio. Direct comparisons between the five cell types were made using
Student’s t-test (adjusted p-values; p < 0.05 considered significant). As
shown in Fig. 3a, normal cells appear the largest with highest total
protein and lipid intensity, leucocytes are the smallest in size with
lowest total protein and lipid intensity. Significant differences in area,
total protein, total lipid and protein/lipid ratio between all the groups
(p < 0.05) were observed. The average protein intensity of normal cells
is higher than leucocytes (p < 0.05, 95 % CI: 41.08 to 319.0), and that of
HSIL is higher than LSIL(p < 0.001, 95 % CI: 155.2 to 389.7)/SCC cells
(p <0.001,95 % CI: 2.111 to 298.1). No significant difference in average
protein intensity exists between normal cells and LSIL/HSIL/SCC cells,
nor between LSIL cells and leucocytes/SCC cells. The average lipid in-
tensity shows significant differences among all the groups (p < 0.05)
except that between leucocytes and HSIL cells. In Student’s t-test, R-
value could be extracted to reflect the correlation of differences between
data, with larger values indicating greater disparity. We plotted heat
maps using the R-values to show the magnitude of differences between
groups with statistically significant disparities, thereby facilitating
further analysis of these differences. As shown in Fig. 3b, the differences
in cell area, total protein, and total lipid intensity between normal cells
and other cell types were the most pronounced. In terms of average lipid
intensity, although both HSIL (p < 0.001, 95 % CI: 312.4 to 432.1) and
SCC (p < 0.001, 95 % CI: 145.3 to 230.0) cells show significant
distinction from LSIL cells (Fig. 3a), it is evident that the HSIL/LSIL
difference is greater than that of HSIL/SCC cells (Fig. 3b). For average
protein intensity, HSIL/LSIL difference is greater than that of SCC/LSIL
cells. However, for total protein intensity, HSIL/LSIL difference is

weaker than that of SCC/LSIL cells. The difference in protein/lipid ratio
between HSIL and SCC cells is less obvious than that between the other
cell types.

To investigate the connection between cellular characteristics (cell
morphology and chemical composition) and the degree of malignancy of
cervical cells, we performed Spearman’s correlation analysis for normal,
LSIL, HSIL, and SCC cells. Results in Fig. 3c indicate that cell area (r =
—0.8827, p < 0.0001), total protein intensity (r = —0.9071, p < 0.0001),
total lipid intensity (r = —0.7611, p < 0.0001), and protein/lipid ratio (r
= —0.7323, p < 0.0001) were negatively correlated with the degree of
malignancy; while the average lipid intensity was positively correlated
with the degree of malignancy (r = 0.6766, p < 0.0001), and the average
protein intensity showed no significant correlation with malignancy (p
> 0.05). The above statistical results indicate that cell morphology and
biochemical compositions differ significantly between various cervical
cell types, and are closely related to the degree of malignancy.

3.4. Automated diagnoses with classification model

We further employed Al-assisted cervical cancer -cytological
screening leveraging both morphological and chemical cellular charac-
teristics of various cell types. We first tested dimensionality reduction on
the original feature dataset using principal component analysis (PCA)
algorithm to produce primary components PC1 and PC2 (>90 % of total
features), followed by K-means clustering algorithm to divide the data
into two distinct populations (Fig. 4a). However, such unsupervised
paradigm segregated normal cells from all pathological subtypes
(Fig. 4b), failing to achieve the clinically critical benign/malignancy
discrimination.

We therefore implemented a supervised deep learning framework
using a residual neural network (ResNet50) optimized for diagnostic
classification based on SRS images containing integrated cytomorpho-
logical and biochemical signatures. A curated dataset of 700 SRS images
from 41 patients was annotated by pathologists based on standardized
benign/malignancy criteria (Fig. 4c): images containing any HSIL or
SCC cells were classified as malignant, while those containing only
normal cells, leucocytes, and LSIL cells labeled as benign cases.

To mitigate class imbalance inherent in cytological samples [52], we
strategically oversampled malignant cases during model development,
achieving an 80.5 %:19.5 % malignant-to-benign ratio in the training
cohort (Supplementary Fig. S2a). In terms of number of images, the
malignant/benign distribution is 44.3 %:55.7 % (Supplementary
Fig. S2b). The dataset was partitioned into training (90 %) and holdout
test (10 %) sets, with rigorous separation maintained throughout
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Fig. 3. Quantitative characterization of cell morphology and chemical composition. a, Differential analysis of cell area, total lipid intensity, total protein
intensity, protein/lipid ratio, average lipid intensity and average protein intensity in each group using t-test. ***p < 0.001, **p < 0.01, *p < 0.05, ns: no significant
difference (p-values were adjusted using the Holm-Sidak method). b, Heatmap of area, total lipid intensity, total protein intensity, protein/lipid ratio, average lipid
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validation. For data partitioning, we designated data from 5 patients (a
total of 70 images) as an independent test set, which was strictly
excluded from all training and validation procedures to ensure unbiased
evaluation on unseen patients. The remaining images were used for
model development, where five-fold cross-validation was applied be-
tween the training (80 %) and validation (20 %) subsets to optimize
model parameters and maximize data utilization. Training images un-
derwent augmentation (rotation, flipping, contrast/brightness adjust-
ment) to generate 6930 samples.

The ResNet50 architecture demonstrated exceptional diagnostic
performance (Fig. 4d and e), achieving an area under the ROC curve
(AUC) of 0.994 on independent test set of 70 images (39 benign and 31
malignant). (Fig. 4f). It produced only one false positive and no false
negatives, yielding an accuracy of 98.5 %, sensitivity of 100 %, speci-
ficity of 97.4 %, negative predictive value (NPV) of 100 %, positive
predictive value (PPV) of 97.5 % and F1-score of 0.987. The raw ROC
curve data and the confusion matrix are provided in the Supplementary
Tables S1 and S2. Although sensitivity was 100 %, the false-positive case
highlights the need to improve specificity using larger datasets and in-
tegrated multimodal information. The SRS imaging platform coupled
with optimized deep learning establishes a robust framework for

automated cervical cancer screening, combining subcellular chemical
specificity with diagnostic-grade predictive accuracy.

3.5. Multiplex cell segmentation for diagnostic decision support

To complement Al-assisted malignancy detection with pathologist-
interpretable visual guidance, we implemented a semantic segmenta-
tion framework (DeepLabV3+) for spatially resolving individual cancer
cells within complex cytological mixtures. This architecture generates
pixel-wise classifications of five cell types in SRS images, enabling pre-
cise identification of a few HSIL and SCC cells amidst a large number of
mixed cells.

Pathologists created a gold-standard segmentation dataset through
meticulous pixel-level annotation of 500 SRS images (Supplementary
Fig. S3), partitioned into training (80 %) and test (20 %) sets. To address
inherent diagnostic challenges in rare cancer cell identification, we
strategically enriched the dataset to contain 62 % malignant images
(Supplementary Fig. S4a) while maintaining biological relevance
through controlled representation of cellular combinations
(Supplementary Fig. S4b). The final distribution comprised 53.4 % SCC-
containing and 43.2 % HSIL-containing images (Supplementary
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Fig. S4c), ensuring robust exposure to key diagnostic targets.

The trained network is capable of distinguishing all five cell types in
the same image field of view with high accuracy and high spatial reso-
lution (Fig. 5a). The robust performance of the model in cell typing is
shown under diverse combinations of cell mixtures (Fig. 5b). To quan-
titatively evaluate the segmentation capability of the network, four
metrics are extracted and summarized in Table 1. Intersection over
union (IoU): 0.76 + 0.09 (mean =+ SD), indicating strong spatial overlap
with ground truth; Recall: 0.86 + 0.07, demonstrating effective detec-
tion of pathological cells; Precision: 0.85 + 0.08, confirming minimal
false positive identifications; Dice coefficient: 0.84 £ 0.06, reflecting
comprehensive segmentation accuracy [53].

Performance variation across cell types revealed fundamental bio-
logical correlations: Normal cells showed optimal segmentation (IoU =
0.88) due to distinct morphological signatures, while HSIL (IoU = 0.67)
and SCC (IoU = 0.69) presented greater challenges from overlapping
biochemical profiles (Fig. 5¢). Such cell-type-dependence was found to
be correlated with the cytologic features of each cell type as shown in the
comparison between their R values (averaged with respect to the rest
four types) and the model metrics (Fig. 5¢). In particular, three key
determinants of segmentation fidelity could be identified: cell size, lipid
content and protein/lipid ratio. The biochemical-morphological
coupling confirms the network leverages biologically meaningful fea-
tures for decision-making. By integrating segmentation maps with
diagnostic classifications, we establish a VAD-SRC platform that en-
hances clinical utility.

Traditional cytology relies on visual assessment of stained cell
morphology, which is time-consuming with modest sensitivity (50-70
%) [54-58]. In contrast, spontaneous Raman spectroscopy suffers from
weak signals and long acquisition times, whereas SRS microscopy pro-
vides rapid, label-free imaging at subcellular resolution, making it more
suitable for high-throughput cytology. Our work demonstrates the
advantage of combining quantitative chemical imaging and
deep-learning algorithms in the rapid diagnostic classification of cervi-
cal cells in early cancer screening. This integration of SRS and Al offers
both chemical specificity and diagnostic-grade performance, advancing
beyond conventional methods of cytologic screening.

Although cervical exfoliated cells could be classified into numerous
fine categories [59,60], in this work we simplified them into five grades
with clinical significance [52,61]. Furthermore, according to the ACS

a SRS

B scc BHsIL []LsiL M Leucocytes [ ] Normal

Prediction

SRS T
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Pathologist

Pathologist
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Table 1

Performance of the segmentation model. Intersection over union (IoU),
recall, precision and dice coefficient were used as metrics to evaluate the per-
formance of the segmentation model for different cell types.

Category ToU Recall Precision Dice
scc 0.69 0.81 0.81 0.80
HSIL 0.67 0.82 0.77 0.78
LSIL 0.82 0.90 0,89 0.89
Leucocytes 0.73 0.83 0,85 0.83
Normal 0.88 0.92 0.93 0.92
Average 0.76 0.86 0.85 0.84

management guidelines, LSIL is typically managed conservatively as
benign, whereas HSIL and SCC require definitive treatment. Hence, our
binary classification strategy (benign vs. malignant) reflects clinical
practice. Nevertheless, we acknowledge that increasing the classifica-
tion categories are important in real-world diagnosis, and future ex-
tensions to multiclass models could enhance clinical applicability.
Besides lipid and protein, other biochemical components such as
glycogen may also be explored [62,63], but the trade-off between added
information and imaging efficiency must be considered.

Al-assisted diagnostic techniques have significantly advanced and
are widely applied in medicine [64-66]. In this study, image-based su-
pervised learning outperformed feature-based unsupervised learning. A
major challenge remains the need for extensive manual annotation,
particularly with larger datasets. Weakly supervised learning emerges as
a promising solution [31,67], may potentially improve diagnostic ac-
curacy and reduce annotation workload. Despite current limitations of
dataset size and inter-pathologist variability, segmentation performance
has already met review standards for diagnostic support. To further
assess scalability, we compared computational resource requirements
between ResNet50 and DeepLabV3-+, as summarized in Supplementary
Table S3. These results indicate that while DeepLabV3+ offers finer
spatial localization, the lighter ResNet50 is more resource-efficient.

In terms of diagnostic reliability, although our model achieved 100
% sensitivity on the independent test set, one benign case was mis-
classified as malignant, highlighting the possibility of false positives in
clinical practice. To mitigate the risks, Al predictions should be inte-
grated into multi-stage workflows verified by pathologists, and future
work should incorporate larger and more diverse datasets to improve

C
Indicator
------ loU --+---Recall -- =--- Precision - - =--- Dice
- @ = mean std.dev.

Average R value

—=— average protein —— average lipid —— protein/lipid
—=—area —— total protein —— total lipid
—=—mean std.dev.

1.0 -

Feature values

0.2 - =
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Normal LSIL Leucocytes HSIL Scc
Cell type

Fig. 5. Visual identification of cells using segmentation model. a, Comparison of the segmentation results using the deep-learning model with that of the
pathologists on a mixture of five types of cervical cells. b, Demonstration of the effective identification of various cell types under diverse distributions using the
model. Scale bars: 10 4 m. ¢, Correlation between the average R values of different cell types and the segmentation performance of the model.
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specificity. Moreover, our current study involved 41 patients from a
single institution, which may limit the generalizability of the findings
and introduce potential institutional bias. Future multi-center cohort
with larger data size are essential to strengthen the robustness of the
method [68,69].

Beyond the innovative performance for cervical cytology, the
applicability of VAD-SRC could also be extended to other similar cyto-
logical examinations, such as urinary, oral, and pleural fluid cytology.
For clinical translation, further technical integration and cost reduction
are necessary. Compact fiber-laser systems may replace bulky solid-state
lasers [70,71], U-Net-based femto-SRS methods could simplify config-
uration [72], and virtual staining could transform SRS images into
standard histopathologic formats [34,35,73]. Together with multicenter
validation, these improvements could support routine adoption of
VAD-SRC.

4. Conclusions

In summary, our study demonstrates the effectiveness of Al-assisted
SRS microscopy for efficient cervical cytology analysis. The quantitative
biochemical analysis identified distinct cytological features in various
cell types that are strongly associated with malignancy. Our VAD-SRC
system offers two key functions: rapid screening of cells to determine
if they are benign or malignant with high accuracy, and the ability to
automatically visualize individual cancer exfoliated cells, aiding pa-
thologists in precise diagnosis. VAD-SRC holds promise to bridge the gap
between Al-driven diagnostics and conventional cytopathology, ulti-
mately enhancing diagnostic accuracy and efficiency in cervical cancer
screening.
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