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A B S T R A C T

Cervical cancer screening remains pivotal for early detection and effective disease management, yet conventional 
cytopathological methods relying on stained cell-smear analysis face critical limitations in diagnostic throughput 
and sensitivity. We present a stain-free Visual-Aided Diagnosis via Stimulated Raman Cytology (VAD-SRC) 
platform that enables rapid cervical cell screening through simultaneous chemical and morphological profiling. 
By capturing intrinsic biomolecular contrast via stimulated Raman scattering (SRS) microscopy, our platform 
establishes malignancy-associated cellular fingerprints through quantitative analysis. Integrated with a deep 
convolutional neural network architecture, VAD-SRC achieves superb diagnostic performance (98.5 % accuracy, 
100 % sensitivity) on an independent test set for binary classification of benign versus malignant cases. More
over, its high-resolution segmentation function automates the identification of individual cancer cells within a 
mixture of five cell types: normal cells, leucocytes, low-grade squamous intraepithelial lesion (LSIL), high-grade 
squamous intraepithelial lesion (HSIL), and squamous cervical cancer (SCC) cells. This advancement offers 
promising potential for cervical cancer screening and visual assessments within cytopathology workflows, 
enhancing diagnostic efficiency and precision.

1. Introduction

Cervical cancer (CC) remains a critical global health challenge as one 
of the three most common malignant tumors of female reproductive 
system, causing more than 300,000 annual deaths worldwide [1], 
maintaining its status as the second leading cause of cancer-related 
mortality in women aged 20–39 [2]. Despite the success of Pap smear 
screening and human papillomavirus (HPV) vaccination programs, the 
disease continues to pose a significant burden, particularly in regions 
with limited access to early screening [3–6]. While the ThinPrep Cyto
logic Test (TCT) has been widely adopted, its diagnostic value is limited 
by inter-observer variability, modest sensitivity for high-grade lesions, 
and lengthy processing times [7–10]. According to the America Cancer 
Society (ACS) management guidelines [11], low grade squamous 
intraepithelial lesion (LSIL) is considered benign and typically 

monitored without immediate intervention, whereas high grade squa
mous intraepithelial lesion (HSIL) and squamous cervical cancer (SCC) 
are categorized as malignant, necessitating definitive diagnosis and 
treatment. The morphological similarities between LSIL and reactive 
changes frequently results in diagnostic ambiguity, highlighting critical 
gaps in current diagnostic frameworks and the urgent need for more 
accurate and efficient cervical cytologic screening modalities.

Various label-free optical methods have been widely investigated for 
cervical cell imaging and cancer screening. While techniques like optical 
coherence tomography (OCT), autofluorescence microscopy, and second 
harmonic generation (SHG) microscopy provide structural insights, they 
lack chemical specificities of cells [12,13]. Spontaneous Raman scat
tering spectroscopy, despite its biochemical sensitivity, suffers from 
weak scattering cross-section and slow acquisition speed for efficient 
histologic diagnosis [14–16]. Coherent anti-Stokes Raman scattering 
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(CARS) microscopy struggles with non-resonant background interfer
ence, complicating accurate quantification of chemical concentrations 
[17]. Despite these challenges, the chemical information associated with 
cellular metabolic reprogramming is critically important for tumor 
progression [18], including the energy demand of tumor proliferation 
and invasion that could alter the energy supply pathways through 
anaerobic glycolysis and lipid metabolism, etc. [19]. Hence intracellular 
chemical compositions (such as lipid and protein) may be used to 
differentiate normal cells from tumor cells. However, the analysis of 
conventional cervical cytology is either limited by external labeling 
[20–22] or constrained by imaging speed and resolution [23–26].

As a novel imaging technique, stimulated Raman scattering (SRS) 
microscopy amplifies Raman signal by orders of magnitude through 
coherent stimulated emission process, achieving high sensitivity and 
imaging speed, while retaining chemical resolution based on the spectral 
fingerprints of intrinsic molecules [27–30]. Thus, SRS microscopy offers 
advantages in rapid label-free chemical imaging at the single-cell level 
with diffraction-limited spatial resolution. Recent researches have 
demonstrated that SRS integrated with artificial intelligence (AI) algo
rithms holds promise in clinical screening and rapid diagnosis of tumor 
on unprocessed tissues, with potential applications in intraoperative 
histopathology for various types of human cancers [31–36]. Although 
single-cell SRS imaging has also been shown in the diagnosis of perito
neal metastasis of gastric cancer [37], it heavily relied on the numerical 
analysis of multiple cytological features using K-means and SVM (Sup
port Vector Machine) algorithms. From the perspective of pathologists, 
there exist distinct differences between cytological and histological ex
aminations in clinical practice [38–40]. While direct image-guided 
cytologic examination is more favored in clinical settings due to its 
specificity [41], it also provides valuable diagnostic confirmation op
portunities based on AI-recognized abnormal cells, alongside predictive 
results [42–44].

In this study, we developed a Visual-Aided Diagnosis via Stimulated 
Raman Cytology (VAD-SRC) platform for cervical cancer screening. 
Unlabeled cellular images containing lipid and protein distributions 
were captured, and chemical analysis was performed on various cell 
types to investigate the correlation between cytological features and 
diagnostic performance of the neural network. A convolutional neural 
network (CNN)-based classification model successfully categorized im
ages into benign and malignant groups, achieving an accuracy of 98.5 % 
and a sensitivity of 100 %. Additionally, a segmentation network was 
implemented to visualize individual cancer cells within the malignant 
group, aiding pathologists in final decision-making for rapid diagnosis in 
cervical cytology screening.

2. Materials and methods

2.1. Collection and preparation of cervical cells

The study was approved by the Institutional Ethics Committee of the 
Obstetrics and Gynecology Hospital of Fudan University, School of 
Medicine with written informed consent (approval no. 2024–227). Cell 
samples were collected from 41 individuals undergoing cervical cancer 
screening at Obstetrics and Gynecology Hospital of Fudan University, 
including 8 healthy controls and 33 patients pathologically confirmed 
with cervical malignant lesions. For each individual, cervical cell sam
ples were collected using a cervical cytobrush. Half of the samples were 
used for cytological examination, and further testing was determined 
based on the results, ultimately leading to the clinical diagnosis of the 
patient. The other half of the samples were immediately prepared into 
smears without additional fixation or storage, and subjected directly to 
SRS imaging. Specifically, the samples were rinsed with phosphate- 
buffered saline, and centrifuged at 2000 rpm for 3 min. A cell suspen
sion (approximately 10 μL) was then dropped onto a glass slide and 
evenly spread for SRS microscopy examination, followed by analysis 
using VAD-SRC. The number of cells in each group was maintained in a 

balanced distribution across different analytical tasks (e.g., Student’s t- 
test, classification model, and segmentation model).

2.2. SRS imaging

We used the following setup for SRS imaging: a femtosecond optical 
parametric oscillator (Insight DS+, Newport) laser was employed as the 
light source, with a fixed-wavelength beam (1040 nm, ~200 fs) serving 
as the Stokes beam and a tunable beam (680–1300 nm, ~150 fs) func
tioning as the pump beam. The Stokes beam and pump beam were lin
early chirped to picoseconds using SF57 glass rods, providing sufficient 
spectral resolution. The Stokes beam was modulated by an electro-optic 
modulator at a frequency of 20 MHz. The two spatially and temporally 
overlapped beams were focused onto the sample through a laser scan
ning microscope (FV1200, Olympus) and a water immersion objective 
lens (UPLSAPO 60XWIR, NA 1.2 water, Olympus) to induce the SRS 
process. The stimulated Raman loss signal was detected by a homemade 
back-biased photodiode and the electronic signal was further demodu
lated with a lock-in amplifier (HF2LI, Zurich Instruments) to form im
ages. The motorized delay stage selected the target Raman frequency by 
adjusting the pulse time delay between the two beams. For cellular 
imaging, we utilized the Raman shifts at 2845 cm− 1 and 2930 cm− 1. 
Based on the spectral differences of lipids and proteins at these two 
wavenumbers, we obtained SRS images of lipid and protein distributions 
through a linear decomposition algorithm, generating a two-color SRS 
image with lipids represented in green and proteins in blue. All images 
were acquired at 512 × 512 pixels, with a pixel dwell time of 2 μs. The 
system’s spatial resolution was 350 nm. The laser power incident on the 
sample was as follows: pump 30 mW and Stokes 30 mW.

2.3. Visual-aided diagnostic model

To achieve visual-aided diagnosis of cervical cells, we designed a 
deep learning algorithm that includes two models: a classification model 
and a segmentation model. The model was developed using the PyTorch 
framework compiled in Python. The core of the classification model is 
the "ResNet50" network, which consists of 49 convolutional layers and 
one fully connected layer. The basic building block of the network is the 
residual block, with each residual block consisting of three convolu
tional layers. The collected SRS images are used as input, and the model 
outputs the predicted results along with their probabilities. The core of 
the segmentation model is the "DeepLabV3+" network, which employs 
an encoder-decoder structure. The encoder part is responsible for feature 
extraction. Its main body consists of a deep convolutional neural 
network (DCNN) with atrous convolutions, along with the atrous spatial 
pyramid pooling module (ASPP). The decoder part progressively re
stores spatial information through upsampling. SRS images are used as 
input, and the output of the network is a segmentation map, where each 
pixel in the input image is assigned a class label. The five types of cells 
are assigned five class labels with color coding. All deep learning tasks 
were conducted on a workstation equipped with an NVIDIA GTX 1080Ti 
GPU (11 GB memory). Model development and training were imple
mented in Python 3.11.5 using PyTorch 2.0.1.

In the dataset preparation process, for the classification model, pa
thologists pre-annotated the SRS images into benign/malignant cate
gories; for the segmentation model, pathologists pre-annotated the 
regions of different cells within the images to generate segmentation 
masks. The datasets are subsequently divided into training and testing 
sets. The test set images were independent of the training process at the 
patient level. The remaining images were used for model development. 
Within this subset, fivefold cross-validation was applied to separate 
training and validation subsets for parameter optimization. To reduce 
overfitting and balance class distribution, data augmentations (rotation, 
flipping, and adjustment of contrast and brightness) were applied prior 
to training. Accuracy, the receiver operating characteristic (ROC), area 
under the curve (AUC), and confusion matrix were used to evaluate the 
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performance of classification models. Intersection over union (IoU), 
recall, precision and dice coefficient were used to evaluate the perfor
mance of segmentation model. The network was initialized as follows: 
the learning rate for the classification model was set to 0.075, while the 
learning rate for the segmentation model was set to 0.007. Stochastic 
Gradient Descent (SGD) was chosen as the optimizer, and Cross
EntropyLoss was used as the loss function.

2.4. Images processing and analysis

For SRS images, the intensity distributions of lipids and proteins in 
cells were obtained using a linear decomposition algorithm. ImageJ was 
then utilized to extract the area, total lipid intensity, total protein in
tensity, average lipid intensity, average protein intensity, and the pro
tein/lipid ratio for normal cells, leucocytes, LSIL, HSIL, and SCC cells. 
The PCA algorithm was used to reduce the dimension of cytological 
feature data, and K-means algorithm was used to cluster the data after 
dimensionality reduction. Both PCA and K-means were performed by 
Origin. A Student’s t-test was conducted to compare cytological feature 
data between groups, yielding p values (adjusted by Holm–Sidak), 
confidence intervals (CI) and R values. Spearman correlation analysis 
was performed to analyze the cytological features of cells at different 
degrees of malignancy, obtaining r values and p values. All analyses 
were executed using SPSS.

Prior to deep learning analysis, all raw SRS images were normalized 
and standardized (mean-centered and variance-scaled) to stabilize 
model training. Data augmentation methods were also applied to 
expand dataset diversity and reduce overfitting.

3. Results and discussion

3.1. Workflow of VAD-SRC

The main goal of our study is to develop a rapid, accurate and image- 
guided cervical cancer screening method. SRS microscopy was 
employed to capture intrinsic molecular information without staining. A 
deep learning-based visual-aided diagnostic system was developed to 
reduce pathologists’ workload and provide more objective diagnoses. 
Fig. 1 illustrates the workflow of VAD-SRC. First, cervical cell specimens 
were collected from patients using sample brushes, which were then 

smeared onto glass slides for direct SRS imaging (Fig. 1a) based on the 
Raman bands of the CH2 (2845 cm− 1) and the CH3 (2930 cm− 1) vibra
tions. Such frequency selection has been widely adopted to extract 
protein and lipid distributions in biological speciemens based on their 
characteristic SRS spectra (Supplementary Fig. S1) [45–47]. The 
dual-channel images were decomposed into lipid (green) and protein 
(blue) distributions to obtain two-color SRS images using a linear 
combination algorithm (Fig. 1b) [48,49]. Then the images were fed into 
a convolutional neural network (CNN)-based diagnostic system to 
conduct both the classification and segmentation tasks (Fig. 1c). In this 
study, cervical cells were classified into binary groups (benign/malig
nant) according to clinical criteria: those containing only normal cells, 
leucocytes, and LSIL cells were classified as benign; whereas those 
showing any SCC or HSIL cells were classified as malignant [50]. The 
malignant group was further processed by the segmentation model to 
delineate individual HSIL and SCC cells within the whole-slide image. By 
doing so, the AI-assisted visualization of malignant cells allows pathol
ogists to rapidly identify target cells to make final diagnostic decision, 
helping to avoid examination on a large number of cells with improved 
diagnostic accuracy.

3.2. SRS imaging and Pap smear of cells

Cervical cell specimens were imaged with SRS microscopy to map 
out the chemical and morphological profiles in a label-free manner. To 
directly compare SRS with Pap smears in revealing cytologic features of 
various cervical cells, we imaged each sample with the two modalities: 
SRS microscopy without labeling, and Pap staining followed by bright- 
field optical microscopy. Fig. 2 shows the comparison between SRS 
and Pap smear results of five cell types, including normal cells (Fig. 2a), 
leucocytes (Fig. 2b), LSIL (Fig. 2c), HSIL (Fig. 2d) and SCC (Fig. 2e) cells. 
It can be seen that SRS images readily show the distinct cell morphology 
and chemical contrast of each cell types. Moreover, they demonstrate 
high consistency with Pap smears in cytologic diagnosis as recognized 
by pathologists. Normal cervical cells tend to have the largest size and 
higher protein content (blue), lymphocytes appear the smallest in size. 
LSIL cells clearly exhibit perinuclear cytoplasmic clearing (koilocytosis, 
arrow) and demonstrate an increased nucleus-to-cytoplasm (N/C) ratio 
relative to normal cells. In contrast, both HSIL and SCC cells show an 
even larger N/C ratio compared to LSIL cells. HSIL cells are 

Fig. 1. Workflow of visual-aided diagnostic system based on stimulated Raman cytology (VAD-SRC). a, Taking cell smears from patients undergoing cervical 
cancer screening for SRS imaging. b, Cells were imaged at 2930 cm− 1 (left) and 2845 cm− 1 (middle). A linear decomposition algorithm of the two raw images was 
used to compute the distribution of lipid (green) and protein (blue), merging into a two-color SRS image (right). Scale bars: 5 μ m. c, Visual-aided diagnostic system 
consists of two components: a classification model and a segmentation model. The classification model genereates binary prediction of benign versus malignant, and 
the segmentation model subsequently identifies individual cancer cells within the malignant group. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.)
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characterized by coarse chromatin displaying a uniformly distributed 
granular pattern (arrow), whereas SCC cells frequently present with 
prominent nucleoli (arrow) [50,51]. Additionally, LSIL, HSIL, and SCC 
cells show an elevated lipid content compared to normal cells (green). 
The combined spatio-chemical information is essential for subsequent 
feature analysis and deep-learning models in cervical cytopathology and 
cell typing.

3.3. Quantitative morphological and chemical characterization of cervical 
cells

We next performed detailed cytologic and biochemical character
izations of normal cells, leucocytes, LSIL, HSIL and SCC cells. Taking 
advantage of SRS microscopy in quantitative chemical analysis of un
processed cervical cells, we were able to extract six key quantities for 
cell typing, including the area, total protein intensity, total lipid in
tensity, mean protein intensity, mean lipid intensity, and protein/lipid 
ratio. Direct comparisons between the five cell types were made using 
Student’s t-test (adjusted p-values; p < 0.05 considered significant). As 
shown in Fig. 3a, normal cells appear the largest with highest total 
protein and lipid intensity, leucocytes are the smallest in size with 
lowest total protein and lipid intensity. Significant differences in area, 
total protein, total lipid and protein/lipid ratio between all the groups 
(p < 0.05) were observed. The average protein intensity of normal cells 
is higher than leucocytes (p < 0.05, 95 % CI: 41.08 to 319.0), and that of 
HSIL is higher than LSIL(p < 0.001, 95 % CI: 155.2 to 389.7)/SCC cells 
(p < 0.001,95 % CI: 2.111 to 298.1). No significant difference in average 
protein intensity exists between normal cells and LSIL/HSIL/SCC cells, 
nor between LSIL cells and leucocytes/SCC cells. The average lipid in
tensity shows significant differences among all the groups (p < 0.05) 
except that between leucocytes and HSIL cells. In Student’s t-test, R- 
value could be extracted to reflect the correlation of differences between 
data, with larger values indicating greater disparity. We plotted heat 
maps using the R-values to show the magnitude of differences between 
groups with statistically significant disparities, thereby facilitating 
further analysis of these differences. As shown in Fig. 3b, the differences 
in cell area, total protein, and total lipid intensity between normal cells 
and other cell types were the most pronounced. In terms of average lipid 
intensity, although both HSIL (p < 0.001, 95 % CI: 312.4 to 432.1) and 
SCC (p < 0.001, 95 % CI: 145.3 to 230.0) cells show significant 
distinction from LSIL cells (Fig. 3a), it is evident that the HSIL/LSIL 
difference is greater than that of HSIL/SCC cells (Fig. 3b). For average 
protein intensity, HSIL/LSIL difference is greater than that of SCC/LSIL 
cells. However, for total protein intensity, HSIL/LSIL difference is 

weaker than that of SCC/LSIL cells. The difference in protein/lipid ratio 
between HSIL and SCC cells is less obvious than that between the other 
cell types.

To investigate the connection between cellular characteristics (cell 
morphology and chemical composition) and the degree of malignancy of 
cervical cells, we performed Spearman’s correlation analysis for normal, 
LSIL, HSIL, and SCC cells. Results in Fig. 3c indicate that cell area (r =
− 0.8827, p < 0.0001), total protein intensity (r = − 0.9071, p < 0.0001), 
total lipid intensity (r = − 0.7611, p < 0.0001), and protein/lipid ratio (r 
= − 0.7323, p < 0.0001) were negatively correlated with the degree of 
malignancy; while the average lipid intensity was positively correlated 
with the degree of malignancy (r = 0.6766, p < 0.0001), and the average 
protein intensity showed no significant correlation with malignancy (p 
> 0.05). The above statistical results indicate that cell morphology and 
biochemical compositions differ significantly between various cervical 
cell types, and are closely related to the degree of malignancy.

3.4. Automated diagnoses with classification model

We further employed AI-assisted cervical cancer cytological 
screening leveraging both morphological and chemical cellular charac
teristics of various cell types. We first tested dimensionality reduction on 
the original feature dataset using principal component analysis (PCA) 
algorithm to produce primary components PC1 and PC2 (>90 % of total 
features), followed by K-means clustering algorithm to divide the data 
into two distinct populations (Fig. 4a). However, such unsupervised 
paradigm segregated normal cells from all pathological subtypes 
(Fig. 4b), failing to achieve the clinically critical benign/malignancy 
discrimination.

We therefore implemented a supervised deep learning framework 
using a residual neural network (ResNet50) optimized for diagnostic 
classification based on SRS images containing integrated cytomorpho
logical and biochemical signatures. A curated dataset of 700 SRS images 
from 41 patients was annotated by pathologists based on standardized 
benign/malignancy criteria (Fig. 4c): images containing any HSIL or 
SCC cells were classified as malignant, while those containing only 
normal cells, leucocytes, and LSIL cells labeled as benign cases.

To mitigate class imbalance inherent in cytological samples [52], we 
strategically oversampled malignant cases during model development, 
achieving an 80.5 %:19.5 % malignant-to-benign ratio in the training 
cohort (Supplementary Fig. S2a). In terms of number of images, the 
malignant/benign distribution is 44.3 %:55.7 % (Supplementary 
Fig. S2b). The dataset was partitioned into training (90 %) and holdout 
test (10 %) sets, with rigorous separation maintained throughout 

Fig. 2. Pap smear staining and SRS imaging of different types of cervical cells. a-e, Normal cells, leucocytes, low grade squamous intraepithelial lesion (LSIL) 
cells (koilocytosis, arrow), high grade squamous intraepithelial lesion (HSIL) cells (coarse chromatin displaying granular pattern, arrow), squamous cervical cancer 
(SCC) cells (nucleoli, arrow). The region of interest is shown with a magnified view inside the dashed box. Scale bars: 10 μ m.
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Fig. 3. Quantitative characterization of cell morphology and chemical composition. a, Differential analysis of cell area, total lipid intensity, total protein 
intensity, protein/lipid ratio, average lipid intensity and average protein intensity in each group using t-test. ***p < 0.001, **p < 0.01, *p < 0.05, ns: no significant 
difference (p-values were adjusted using the Holm–Sidak method). b, Heatmap of area, total lipid intensity, total protein intensity, protein/lipid ratio, average lipid 
intensity and average protein intensity in each group based on R values. c, Spearman correlation analysis between cellular characteristics and the degree of ma
lignancy of normal cells (1), LSIL (2), HSIL (3), and SCC (4) cells.
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validation. For data partitioning, we designated data from 5 patients (a 
total of 70 images) as an independent test set, which was strictly 
excluded from all training and validation procedures to ensure unbiased 
evaluation on unseen patients. The remaining images were used for 
model development, where five-fold cross-validation was applied be
tween the training (80 %) and validation (20 %) subsets to optimize 
model parameters and maximize data utilization. Training images un
derwent augmentation (rotation, flipping, contrast/brightness adjust
ment) to generate 6930 samples.

The ResNet50 architecture demonstrated exceptional diagnostic 
performance (Fig. 4d and e), achieving an area under the ROC curve 
(AUC) of 0.994 on independent test set of 70 images (39 benign and 31 
malignant). (Fig. 4f). It produced only one false positive and no false 
negatives, yielding an accuracy of 98.5 %, sensitivity of 100 %, speci
ficity of 97.4 %, negative predictive value (NPV) of 100 %, positive 
predictive value (PPV) of 97.5 % and F1-score of 0.987. The raw ROC 
curve data and the confusion matrix are provided in the Supplementary 
Tables S1 and S2. Although sensitivity was 100 %, the false-positive case 
highlights the need to improve specificity using larger datasets and in
tegrated multimodal information. The SRS imaging platform coupled 
with optimized deep learning establishes a robust framework for 

automated cervical cancer screening, combining subcellular chemical 
specificity with diagnostic-grade predictive accuracy.

3.5. Multiplex cell segmentation for diagnostic decision support

To complement AI-assisted malignancy detection with pathologist- 
interpretable visual guidance, we implemented a semantic segmenta
tion framework (DeepLabV3+) for spatially resolving individual cancer 
cells within complex cytological mixtures. This architecture generates 
pixel-wise classifications of five cell types in SRS images, enabling pre
cise identification of a few HSIL and SCC cells amidst a large number of 
mixed cells.

Pathologists created a gold-standard segmentation dataset through 
meticulous pixel-level annotation of 500 SRS images (Supplementary 
Fig. S3), partitioned into training (80 %) and test (20 %) sets. To address 
inherent diagnostic challenges in rare cancer cell identification, we 
strategically enriched the dataset to contain 62 % malignant images 
(Supplementary Fig. S4a) while maintaining biological relevance 
through controlled representation of cellular combinations 
(Supplementary Fig. S4b). The final distribution comprised 53.4 % SCC- 
containing and 43.2 % HSIL-containing images (Supplementary 

Fig. 4. Comparison between unsupervised model and supervised model for classification diagnosis. a, Cellular characteristics data was reduced in dimen
sionality using PCA, followed by clustering through the unsupervised K-means algorithm. b, Comparison of the diagnostic results based on customized clinical 
standards for various cell types with clustering results. c, Pathologists pre-annotated SRS images for datasets preparation. The images were classified into benign and 
malignant categories. d, Diagnostic results of test set images using supervised network (ResNet50), compared with true pathology results. e, Confusion matrix of 
diagnosis between the classification model and pathologists. f, ROC analysis of the results from classification model. AUC: area under the curve.
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Fig. S4c), ensuring robust exposure to key diagnostic targets.
The trained network is capable of distinguishing all five cell types in 

the same image field of view with high accuracy and high spatial reso
lution (Fig. 5a). The robust performance of the model in cell typing is 
shown under diverse combinations of cell mixtures (Fig. 5b). To quan
titatively evaluate the segmentation capability of the network, four 
metrics are extracted and summarized in Table 1. Intersection over 
union (IoU): 0.76 ± 0.09 (mean ± SD), indicating strong spatial overlap 
with ground truth; Recall: 0.86 ± 0.07, demonstrating effective detec
tion of pathological cells; Precision: 0.85 ± 0.08, confirming minimal 
false positive identifications; Dice coefficient: 0.84 ± 0.06, reflecting 
comprehensive segmentation accuracy [53].

Performance variation across cell types revealed fundamental bio
logical correlations: Normal cells showed optimal segmentation (IoU =
0.88) due to distinct morphological signatures, while HSIL (IoU = 0.67) 
and SCC (IoU = 0.69) presented greater challenges from overlapping 
biochemical profiles (Fig. 5c). Such cell-type-dependence was found to 
be correlated with the cytologic features of each cell type as shown in the 
comparison between their R values (averaged with respect to the rest 
four types) and the model metrics (Fig. 5c). In particular, three key 
determinants of segmentation fidelity could be identified: cell size, lipid 
content and protein/lipid ratio. The biochemical-morphological 
coupling confirms the network leverages biologically meaningful fea
tures for decision-making. By integrating segmentation maps with 
diagnostic classifications, we establish a VAD-SRC platform that en
hances clinical utility.

Traditional cytology relies on visual assessment of stained cell 
morphology, which is time-consuming with modest sensitivity (50–70 
%) [54–58]. In contrast, spontaneous Raman spectroscopy suffers from 
weak signals and long acquisition times, whereas SRS microscopy pro
vides rapid, label-free imaging at subcellular resolution, making it more 
suitable for high-throughput cytology. Our work demonstrates the 
advantage of combining quantitative chemical imaging and 
deep-learning algorithms in the rapid diagnostic classification of cervi
cal cells in early cancer screening. This integration of SRS and AI offers 
both chemical specificity and diagnostic-grade performance, advancing 
beyond conventional methods of cytologic screening.

Although cervical exfoliated cells could be classified into numerous 
fine categories [59,60], in this work we simplified them into five grades 
with clinical significance [52,61]. Furthermore, according to the ACS 

management guidelines, LSIL is typically managed conservatively as 
benign, whereas HSIL and SCC require definitive treatment. Hence, our 
binary classification strategy (benign vs. malignant) reflects clinical 
practice. Nevertheless, we acknowledge that increasing the classifica
tion categories are important in real-world diagnosis, and future ex
tensions to multiclass models could enhance clinical applicability. 
Besides lipid and protein, other biochemical components such as 
glycogen may also be explored [62,63], but the trade-off between added 
information and imaging efficiency must be considered.

AI-assisted diagnostic techniques have significantly advanced and 
are widely applied in medicine [64–66]. In this study, image-based su
pervised learning outperformed feature-based unsupervised learning. A 
major challenge remains the need for extensive manual annotation, 
particularly with larger datasets. Weakly supervised learning emerges as 
a promising solution [31,67], may potentially improve diagnostic ac
curacy and reduce annotation workload. Despite current limitations of 
dataset size and inter-pathologist variability, segmentation performance 
has already met review standards for diagnostic support. To further 
assess scalability, we compared computational resource requirements 
between ResNet50 and DeepLabV3+, as summarized in Supplementary 
Table S3. These results indicate that while DeepLabV3+ offers finer 
spatial localization, the lighter ResNet50 is more resource-efficient.

In terms of diagnostic reliability, although our model achieved 100 
% sensitivity on the independent test set, one benign case was mis
classified as malignant, highlighting the possibility of false positives in 
clinical practice. To mitigate the risks, AI predictions should be inte
grated into multi-stage workflows verified by pathologists, and future 
work should incorporate larger and more diverse datasets to improve 

Fig. 5. Visual identification of cells using segmentation model. a, Comparison of the segmentation results using the deep-learning model with that of the 
pathologists on a mixture of five types of cervical cells. b, Demonstration of the effective identification of various cell types under diverse distributions using the 
model. Scale bars: 10 μ m. c, Correlation between the average R values of different cell types and the segmentation performance of the model.

Table 1 
Performance of the segmentation model. Intersection over union (IoU), 
recall, precision and dice coefficient were used as metrics to evaluate the per
formance of the segmentation model for different cell types.

Category IoU Recall Precision Dice

SCC 0.69 0.81 0.81 0.80
HSIL 0.67 0.82 0.77 0.78
LSIL 0.82 0.90 0,89 0.89
Leucocytes 0.73 0.83 0,85 0.83
Normal 0.88 0.92 0.93 0.92
Average 0.76 0.86 0.85 0.84
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specificity. Moreover, our current study involved 41 patients from a 
single institution, which may limit the generalizability of the findings 
and introduce potential institutional bias. Future multi-center cohort 
with larger data size are essential to strengthen the robustness of the 
method [68,69].

Beyond the innovative performance for cervical cytology, the 
applicability of VAD-SRC could also be extended to other similar cyto
logical examinations, such as urinary, oral, and pleural fluid cytology. 
For clinical translation, further technical integration and cost reduction 
are necessary. Compact fiber-laser systems may replace bulky solid-state 
lasers [70,71], U-Net–based femto-SRS methods could simplify config
uration [72], and virtual staining could transform SRS images into 
standard histopathologic formats [34,35,73]. Together with multicenter 
validation, these improvements could support routine adoption of 
VAD-SRC.

4. Conclusions

In summary, our study demonstrates the effectiveness of AI-assisted 
SRS microscopy for efficient cervical cytology analysis. The quantitative 
biochemical analysis identified distinct cytological features in various 
cell types that are strongly associated with malignancy. Our VAD-SRC 
system offers two key functions: rapid screening of cells to determine 
if they are benign or malignant with high accuracy, and the ability to 
automatically visualize individual cancer exfoliated cells, aiding pa
thologists in precise diagnosis. VAD-SRC holds promise to bridge the gap 
between AI-driven diagnostics and conventional cytopathology, ulti
mately enhancing diagnostic accuracy and efficiency in cervical cancer 
screening.
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